Category: UDL

Getting real about the challenges of differentiation

I thoroughly enjoyed reading this post by   (@ablinstein) about a challenging class she is teaching. I love a post that begins with a real challenge, a problem that needs to be solved. She writes about a high school class that includes multiple grades, skill levels, and previous experiences with math. While typically successful in focusing her classroom around collaborative group work (using Thinking Classrooms), this class challenges her. She notices that the kids are disengaging from group work, and hears complaints that the class is moving both too fast and too slow.

Anyone who has taught has faced this challenge. This challenge is particularly common when we teach based on lectures, but that is not the case here- Anna has designed her classroom around best practices of group work and rich tasks. Other classes are working with a range of learners, but this one is not. While she is not writing specifically about students with disabilities, this post is a test case of the “good teaching is good teaching” myth. I believe that both “students need to be tracked, students with disabilities need different math” and “just put them together, good teaching is good teaching” belie how challenging it is to teach a wide range of learners.

So what does she do? According to this post, she does a tremendous amount, some of which is supported by already existing research, and some of which is innovative and should be researched. She writes

Some suggestions that I implemented that seemed to make a difference:

  • Taking a break from random groups to help students regain their trust that the class would meet their needs; doing some work in pairs designed to foster productive collaboration; allowing students choice as to who to work with while also asking them to work with different students at times; being explicit when the goal of a task was to build collaborative skills

I love that she writes here about trust, knowing that her job is to gain the trust of kids, not just in her as a teacher, but in her ability to organize a class that will work for them. She offers more options for engagement for kids in this class, individual, pair, and group, offering additional choice in whom they work with. She makes it clear that goals are not always content-focused. If this sounds a lot like UDL (Universal Design for Learning), you are right. She is building flexibility and choice into her classroom.

Structuring activities so there was time at the start for individual exploration before asking students to share their thinking with others thus giving more processing time for students who worked more slowly; circulating and helping some students get started; building more optional challenge into tasks for students who worked very quickly or who had already had prior experience with a topic; creating tasks that could be approached with a greater variety of methods and building more writing into tasks so that different ways of thinking mathematically could be valued

This paragraph is a master class in creating an inclusive classroom in math. Thinking time is super important, particularly as for many neurodiverse learners, processing time is perhaps the fundamental difference from their peers. If class rushes past them, they don’t have the time to engage to their potential. Building in an optional challenge is a great way to engage students who don’t need that time- I think we should spend more time talking about how to do that so that students who work faster are offered opportunities to think deeply, not just move on to the next topic. She writes about creating rich, multi-leveled tasks, and basically notes that she had to be more careful about the tasks being multi-leveled as her class was more heterogeneous in terms of skill level. She looks to her tasks, rather than to deficits in the kids, as a point of change.

Meeting students where they were to regain trust and buy-in; this included at times splitting the class into two groups (students chose which group to join) – a more free-form exploratory group with more open and challenging problems and a more structured group where students would get some problems to activate prior knowledge and smaller, more concrete problems that would build over time to greater generalization and abstraction and more teacher guidance and reassurance that they were on the right track

This is a great strategy, and very UDL, as it is focused on students making the choices about how they learn, rather than a teacher doing the categorizing and sorting into differentiation groups. I would love to hear more about how these groups worked, and how students responded to them. Also, did students always pick the same groups? Did it vary by topic?

Noticing struggling students’ successes and highlighting them publicly; selecting which students would share their thinking to make sure that different voices could be heard over time

Here we see the important insights from Complex Instruction about status treatments, particularly important when working to establish status for kids with less status in heterogeneous environments.

Make sure to leave time for synthesis and practice problems (at different levels) during class – this helped address student concerns that they were leaving class with lots of questions and feeling unsettled about the concepts they had explored that day

Giving students more feedback during class about their understanding of a topic rather than relying more heavily on groupwork and self-assessment for students to know how they were doing and what might be helpful next steps

Here, she attends to making sure that students leave the class feeling secure in new knowledge. She attends to synthesis. Feedback is a critical element of learning, with kind of an unfortunate name that suggests a computational model of learning. But feedback is really getting human interaction around your work, to see what you think mirrored in another, and can be particularly important when coming from the teacher, since our kids (mostly!) value what we think about what they think. It makes our kids feel valued.

Providing more problems at different levels and helping students navigate which problems might be more helpful for them to do during/after a particular lesson – here is an example of a tiered homework problem set.

I love this example of a tiered homework problem set. It begins by laying out the essentials, then gives problems that are Important, Interesting, and Challenging. I love that these are not reducible to Easy, Medium and For The Smart Kids. The first set is Important, which is why you should do them.

This post helps us build on the important work of Complex Instruction, layering in practices that allow kids to learn in their Zone of Proximal Development, making choices about their own learning, which leads to increased meta-cognition.

Yes, as Anna notes, this is an unsustainable amount of work.  Yes, this is a tremendous amount of work, but the structures that you put into place are repeatable. That lovely homework, for example, is now made! Can departments, can the #MTBOS share these kinds of differentiated assignments?  UDL is meant to solve problems, and then to help save you work, to build flexible supports into classrooms as a key aspect of design, not afterthought.

And this post is a perfect example of UDL in action. Here, she views curriculum and pedagogy as the problem, not the kids. She takes up a problem-solving attitude, working to redesign the classroom around the edges. This classroom redesign is not about the mythical middle, but working to make the class work for those who are on the edges, both needing more time and less, etc. The redesign builds in choice and flexibility as the primary tool to accomplish that.

 

 

Beyond Differentiation

The following post includes links from a presentation on October 17, 2016.

A blog post explaining neurodiversity

A great book to learn more about neurodiversity in classrooms: Armstrong, T. (2012). Neurodiversity in the classroom; Strength-based strategies to help students with special needs succeed in school and life. Alexandria, VA: ASCD.

Universal Design for Learning by CAST

Research on links between dsylexia and spatial processing

Blog post by a dyslexic mathematician

The Dyslexic Advantage website

 

PDF of Differentiation Talk (draft)

Memoirs written by people with learning disabilities referenced in the presentation

Abeel, S. (2005). My Thirteenth Winter: A Memoir. New York, NY: Scholastic.

Arrowsmith-Young, B., & M.D, N. D. (2013). The Woman Who Changed Her Brain: How I Left My Learning Disability Behind and Other Stories of Cognitive Transformation (Reprint edition). Simon & Schuster.

Jr, Jackson. J. T. (2010). Shhhhhhh, I Have Something to Say: The Joe Thomas Story. S.l.: PublishAmerica.

Peel, R. (n.d.). My Dyslexic Journey.  Retrieved from https://www.amazon.com/s/ref=nb_sb_noss?url=search-alias%3Daps&field-keywords=Dyslexic+Journey+peel

Rodrigues, J. (2013). High School Dropout to Harvard: A Dyslexia Success Story. CreateSpace Independent Publishing Platform

Young, K. (2012). Smart on the inside: A true story about succeeding in spite of learning disabilities. Highland Park, IL: Writers of the Round Table

Young, S. (2011). How I Learned.

Collections of narratives written by individuals with learning disabilities

Connor, D. J. (2007). Urban Narratives: Portraits in Progress; Life at the Intersections of Learning Disability, Race, and Social Class. New York: Peter Lang Publishing.

Rodis, P., Garrod, A., & Boscardin, M. L. (2001). Learning disabilities and life stories. Allyn and Bacon.

 

Universal Design for Learning (UDL)

Universal Design for Learning (CAST, 2011) was inspired by Universal Design in architecture.  If you design for people with disabilities before you built the house, it can be more accessible, less expensive, and more beautiful.  UDL applies that theory to learning.  Beginning with the premise that variability is what all learners share, curriculum should be designed to work for the widest variety of learners possible.  Continue reading “Universal Design for Learning (UDL)”

Disability, invisibility, and equity in mathematics (part one)

Disability, invisibility, and equity in mathematics (part one)

A recent post by my friend and colleague Andrew Benjamin Gael rightly critiqued the recent NCTM conference for omitting disability in current calls for equity.  The recent Executive Summary of the Principles to Actions doesn’t mention disability or special education at all.  Andrew asked why, and then went on to describe some recent, powerful work on meeting the needs of students with disabilities using the Mathematical Practices.

As a researcher and teacher educator in both special education and mathematics education, I am constantly confronted with the invisibility of kids with disabilities in mathematics education. Continue reading “Disability, invisibility, and equity in mathematics (part one)”